

RATO S+ TEXHUYECKUE AAHHBIE / TECHNICAL DATA

положение о достоверности

Данный каталог заменяет все предыдущие издания, прошлые тиражи теперь недействительны. Компания VULKAN сохраняет за собой право на внесение поправок и изменений, связанных с новыми разработ-ками. Новые данные применимы только к соединительным муфтам, которые были заказаны после внесения вышеупомянутых поправок или изменений. Пользователь обязан удостовериться в том, что используется новейшее издание каталога. Соответствующее издание каталога можно найти на веб-сайте компании VULKAN www.vulkan.com.

Сведения, содержащиеся в этом каталоге, соответствуют техническим стандартам, используемым компанией VULKAN в текущее время, при указанных условиях в соответствии с пояснениями. Принятие решений и составление выводов о поведении системы относится к исключительной ответственности лица, ответственного за силовую установку.

В выполненном компанией VULKAN анализе крутильных колебаний обычно принимается во внимание только механическая часть упругомассовой системы. Компания VULKAN производит исключительно компоненты систем и не несет совокупной ответственности за анализ крутильно-колебательной системы (в стационарном либо переходном режиме). Точность анализа зависит как от точности используемых данных, так и от данных, предоставленных компании VULKAN, соответственно режиму.

Компания сохраняет за собой право на внесение изменений, связанных с дальнейшими техническими нововведениями. При возникновении вопросов или запросов просьба обращаться в компанию VULKAN.

По состоянию на 08/2010

Производитель сохраняет за собой право на тиражирование, переиздание и перевод.

Мы сохраняем за собой право на изменение размеров и конструкций без предварительного уведомления.

VALIDITY CLAUSE

The present catalogue shall replace all previous editions, any previous printings shall no longer be valid. Based on new developments, VULKAN reserves the right to amend and change any details contained in this catalogue respectively. The new data shall only apply with respect to couplings that were ordered after said amendment or change. It shall be the responsibility of the user to ensure that only the latest catalogue issue will be used. The respective latest issue can be seen on the website of VULKAN on www.vulkan.com.

The data contained in this catalogue refer to the technical standard as presently used by VULKAN with defined conditions according to the explanations. It shall be the sole responsibility and decision of the system administrator for the drive line to draw conclusions about the system behaviour.

VULKAN torsional vibration analysis usually only consider the pure mechanical mass-elastic system. Being a component manufacturer exclusively, VULKAN assumes no system responsibility with the analysis of the torsional vibration system (stationary, transiently)! The accuracy of the analysis depends on the exactness of the used data and the data VULKAN is provided with, respectively.

Any changes due to the technological progress are reserved. For questions or queries please contact VULKAN.

Status: 08/2010

All duplication, reprinting and translation rights are reserved.

We reserve the right to modify dimensions and constructions without prior notice.

СОДЕРЖАНИЕ CONTENTS

02 **Страница** Раде

03 Страница Раде

04 Страница Раде

06 Страница Раде

07 <mark>Страница</mark> Раде положение о достоверности

VALIDITY CLAUSE

СОДЕРЖАНИЕ CONTENTS

XAPAKTEPUCTUKU U OTUCAHUE CHARACTERISTICS AND DESCRIPTION

ПЕРЕЧЕНЬ ТЕХНИЧЕСКИХ ДАННЫХ LIST OF TECHNICAL DATA

PA3MEPЫ/MOMEHTЫ ИНЕРЦИИ/MACCЫDIMENSIONS/MASS-MOMENTS OF INERTIA/MASSES

07 **RATO S+ серия 2100 /** Series 2100

08 **RATO S+ серия 2101** / Series 2101

09 **RATO S+ серия 2200** / Series 2200

10 **RATO S+ серия 2201** / Series 2201

ХАРАКТЕРИСТИКИ И ОПИСАНИЕ

CHARACTERISTICS AND DESCRIPTION

Соединительные муфты RATO S+

Диапазон крутящих моментов: 180,00 - 360,00 кН·м / Torque range: 180.00 - 360.00 kNm

Высокоэластичные соединительные муфты RATO S+n

Компания VULKAN Couplings представляет базовый ряд муфт семейства RATO, которые производятся в серии ACOTEC. Муфты ACOTEC RATO S + размеров 4J и 5В имеют проверенную на практике традиционную конструкцию сегментированных муфт RATO S, однако рассчитаны на более высокий крутящий момент благодаря применению нового эластомера, который обеспечивает более высокую плотность мощности.

Муфта АСОТЕС RATO S + 5Н выводит концепцию АСОТЕС на еще более высокий уровень: элементы муфты имеют абсолютно новую форму, так называемую «цельную» конструкцию. Это конструктивное решение имеет преимущества по сравнению с традиционными двухрядными муфтами в отношении крутильной жесткости и возможной несоосности, а также значительное преимущество по весу за счет уменьшения массы центральной части посредством расчета крутильных колебаний. Разумеется, это означает значительное коммерческое преимущество для клиента.

Благодаря уникальному опыту, накопленному за долгие годы исследований в области эластомеров и вулканизации (литьевое прессование с двумя полостями), в сочетании с наличием собственных испытательных мощностей сегодня компания VULKAN располагает возможностью производства двухрядных элементов муфт с цельной конструкцией с применением отлаженных производственных процессов, соответствующих высочайшим технологическим требованиям. Кроме того, в технических характеристиках этого нового вида продукции учтено повышение мощности больших четырехтактных двигателей для применения в судовых и генераторных установках, заявленное крупнейшими производителями на ближайшее будущее.

Highly Flexible RATO S+ Couplings

VULKAN Couplings presents a range of the initial lot of couplings of the RATO family, which are produced in the ACOTEC series. The ACOTEC RATO S + couplings of sizes 4J and 5B are the proven and conventional design of segmented RATO S couplings, yet they have a higher torque rating with the use of a new elastomer providing higher power density.

The ACOTEC RATO S + 5H takes the ACOTEC principle even one step further: The coupling follows a completely new element design, the so-called integral design. This design principle has the advantages of a conventional two-row coupling with regard to the torsional stiffness and misalignment capacity with significant advantages in weight due to a reduction of the middle mass by torsional vibration calculations. Of course this results in a significant commercial advantage for the customer.

Due to the unique competence grown over many years in the field of elastomer researches and vulcanisation (transfer moulding with two mould cavities) combined with the availability of facilities for inhouse testing VULKAN is today in a position to produce two-row coupling elements in integral design in well-founded production processes of highest technological demand. Furthermore, the product specification of this new product covers the increase of performance of big four stroke engines of the most important manufacturers announced for the near future for marine- and generator applications.

ПЕРЕЧЕНЬ ТЕХНИЧЕСКИХ ДАННЫХ

LIST OF TECHNICAL DATA

Размер	Группа размеров	Номинальный крутящий момент	Макс. крутящий момент,	Макс. крутящий момент ₂	Диапазон макс. крутящего момента	Допуст. вибрационный крутящий момент	Допуст. потеря мощности	Допуст. частота вращения	Допуст. осевое смещение вала	Допуст. радиальное смещение вала	Осевая сила реакции	Радиальная жесткость	Динамическая крутильная жесткость	Коэффициен демпфиро- вания	
Size	Dimension Group	Norminal Torque	Max. Torque ₁	Max. Torque ₂	Max. Torque Range	Perm. Vibratory Torque	Perm. Power Loss	Perm. Rotational Speed	Perm. Axial Shaft Displacement	Perm. Radial Shaft Displacement	Axial Reaction Force	Radial Stiffness	Dynamic Torsional Stiffness	Relative Damping	
		T _{KN} ĸH∙m	T _{Kmax1} кН•м	Т_{Ктах2} кН•м	ΔT _{max} κH•м	Т_{кw} кН•м	Р _{ку50} кВт	n _{Kmax} ²⁾ МИН ⁻¹	ΔK _a	ΔΚ _r ²⁾ ΜΜ	F _{ax1.0} ²⁾ кН	С _{rdyn} кН/мм	C _{Tdyn} 1) kNm/ номинальное	ψ 1) номинально	
		kNm	kNm	kNm	kNm	kNm	kW	1/min	mm	mm	kN	kN/mm	значение, рад rad nominal	значение nominal	
									1	MPORTANT ¹⁾ : C _T	dyn warm, C _{Tdyn Ia} ,	ψ _{warm} are to l	be considered!		
54J1S		180,0	220,0	810,0	275,0	53,00				13,0		6,8	1300	0,75	
54J1M		210,0	265,0	945,0	320,0	55,00	1.10			11,0		9,4	1800	0,90	
54J1H	G 4J10	225,0	295,0	1012,5	355,0	55,00	1,48			9,0		11,5	2200	0,90	
54J1X		225,0	325,0	1012,5	390,0	55,00		- 800	12,0	6,0	2.0	14,4	2750	1,13	
54J2S		180,0	220,0	810,0	275,0	53,00		800	12,0	26,0	2,0	3,4	650	0,75	
54J2M	G 4J20	210,0	265,0	945,0	320,0	55,00	2,96			22,0		4,7	900	0,90	
G4J2H	. 4,120	225,0	295,0	1012,5	355,0	55,00	2,90			18,0		5,7	1100	0,90	
G4J2X		225,0	325,0	1012,5	390,0	55,00				12,0		7,2	1375	1,13	
G5B1S		230,0	285,0	1035,0	345,0	65,00				14,0		8,1	1800	0,75	
55B1M	G 5B10	250,0	330,0	1125,0	400,0	70,00	1,53			12,0		10,1	2250	0,90	
35B1H		280,0	370,0	1260,0	440,0	70,00	1,53		13,0	10,0		12,4	2750	0,90	
55B1X		290,0	410,0	1305,0	485,0	70,00		750		6,0	1,5	15,3	3400	1,13	
S5B2S		230,0	285,0	1035,0	345,0	65,00		, 50	.5,0	28,0		4,0	900	0,75	
55B2M	G 5B20	250,0	330,0	1125,0	400,0	70,00	3,06			24,0		5,0	1125	0,90	
55B2H		280,0	370,0	1260,0	440,0	70,00	-,			20,0		6,2	1375	0,90	
S5B2X		290,0	410,0	1305,0	485,0	70,00				12,0		7,6	1700	1,13	
55G1S		290,0	360,0	1305,0	435,0	80,00				15,0		8,9	2300	0,75	
55G1M	G 5G10	310,0	415,0	1395,0	500,0	85,00	1,72			13,0		10,8	2800	0,90	
55G1H		345,0	465,0	1552,5	555,0	85,00				11,0		13,4	3465	0,90	
35G1X		360,0	510,0	1620,0	615,0	85,00		700	14,0	7,0	1,3	16,6	4300	1,13	
35G2S		290,0	360,0	1305,0	435,0	80,00				30,0		4,4	1150	0,75	
35G2M	G 5G20	310,0	415,0	1395,0	500,0	85,00	3,44			26,0		5,4	1400	0,90	
G5G2H		345,0	465,0	1552,5	555,0	85,00	3,44			22,0		6,7	1732	0,90	

См. пояснение технических данных.

Под заказ применяется каучук различных классов качества.

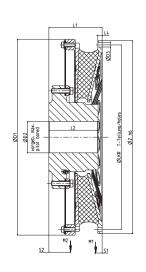
- 1) Компания VULKAN рекомендует дополнительно использовать значения CT'dyn warm (0,7), CT'dyn Ia (1,35) и Ψ_{warm} (0,7) для расчета крутильных колебаний в установках.
- 2) Для условий эксплуатации системы может требоваться корректировка приведенных значений. См. пояснение технических данных.
- В связи со свойствами каучука допустимое отклонение от приведенных технических данных может составлять $\pm 15~\%$ для CT'dyn и +10 % /-20 % для ψ .

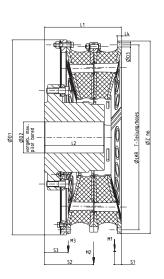
See Explanation of Technical Data.

Different rubber qualities on request.

- 1) VULKAN recommend that the values $CT'dyn\ warm\ (0.7)$, $CT'dyn\ la\ (1.35)$ and $\Psi_{Warm\ }(0.7)$ be additionally used when the installations of torsional vibrations are calculated.
- 2) The actual operating condition could require the correction of the given values. See explanation of Technical Data.

Due to the properties of rubber tolerances in the Technical Data of $\pm 15\%$ for CT'dyn and +10% /-20% for ψ are possible.


06 RATO S+ LTD-1


РАЗМЕРЫ/МОМЕНТЫ ИНЕРЦИИ/МАССЫ

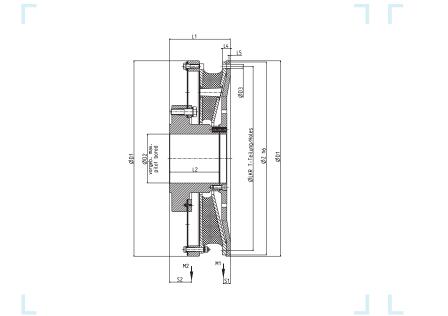
DIMENSIONS/MASS-MOMENTS OF INERTIA/MASSES

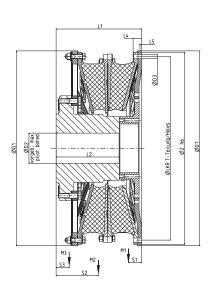
RATO S+ серия / Series 2100

G4J1, G5B1, G5G1

G4J2, G5B2, G5G2

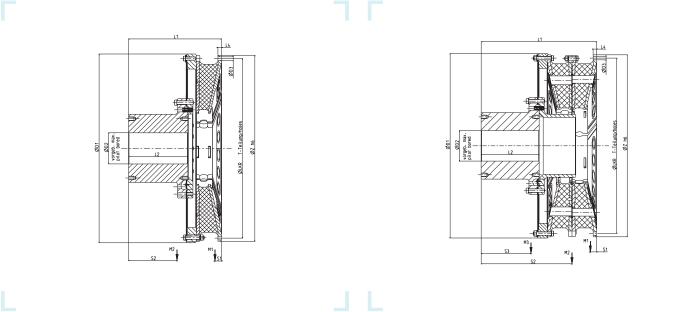
Группа размеров						Разі	меры		Мог	мент инер	ции		Macca		Расстояние до центра тяжести					
Dimension Group		Dimensions											Mass moment of inertia			Mass		Distance to center of gravity		
	Т_{KN} кН•м / kNm	D ₁	D pасточка Pilot bored	2 max.	D ₃	Z	L _{kr}	T	L ₁	L ₂	L ₄ ¹⁾	J ₁	Ј ₂ кг•м² / kgm	J ₃	m ₁	т₂ кг/kg	m ₃	S ₁	S ₂ MM/mm	S ₃
G4J1 G4J2	. 180 - 225	1480	230	370	33,0	1460	1395	32	441,65 621,70	410,0 480,0	33,0	96,4 95,5	278,3 166,0	259,0	306,0 301,0	1402,0 540,0	1450,0	56,0 55,0	174,0 392,0	186,
G5B1 G5B2	. 230 - 290	1585	250	400	33,0	1565	1500	32	440,00 654,75	400,0 500,0	32,0	136,0 132,0	304,0 226,0	336,0	368,0 370,0	1384,0 640,0	- 1650,0	62,0 60,0	148,0 411,0	201,
G5G1 G5G2	. 290 - 360	1710	280	430	36,0	1685	1615	32	473,00 688,60	425,0 520,0	35,0	195,0 190,0	450,0 333,0	489,0	455,0 457,0	1838,0 809,0	2032,0	67,0 65,0	165,0 429,0	205,


A/M 2100-1 RATO S+ 07


ABMESSUNGEN/MASSENTRÄGHEITSMOMENTE/MASSEN

DIMENSIONS/MASS-MOMENTS OF INERTIA/MASSES

RATO S+ серия / Series 2101


G4J1, G5B1, G5G1 G4J2, G5B2, G5G2

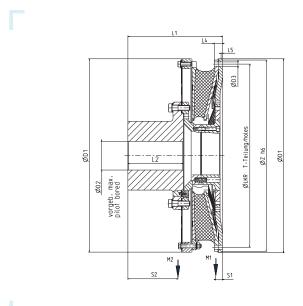
Группа размеров		Размеры												мент инерц	ии		Macca		Расстояние до центра тяжести		
Dimension Group	Dimensions											Mass	moment of in	ertia	Mass			Distance to center of gravity			
	Т_{KN} кН•м / kNm	D ₁	vergeb.	! max.	D ₃	Z	L _{kr}	T	L ₁	L ₂	L ₄ ¹⁾	L _s	J ₁	J₂ кг•м² / kgm²	J ₃	m ₁	т 2 кг/kg	m ₃	S ₁	S ₂ MM/mm	S ₃
G4J1 G4J2	180 -	1480	230	370	33,0	1460	1395	32	469,70 649,70	410,0 480,0	61,0	12,0	183,6 183,8	285,6 164,7	267,9	546,0 547,0	1488,0 535,0	1578,0	56,0 59,0	189,0 391,0	217,
G5B1 G5B2	230 -	1585	250	400	33,0	1565	1500	32	470,00 685,20	400,0 500,0	62,0	12,0	262,0 262,0	316,0 222,0	339,0	658,0 658,0	1508,0 598,0	1921,0	61,0 61,0	171,0 411,0	235,
G5G1 G5G2	. 290 - 360	1710	280	430	36,0	1685	1615	32	505,00 720,60	435,0 520,0	67,0	12,0	365,3 374,0	506,0 316,0	491,0	807,0 829,0	1998,0 744,0	2384,0	64,0 64,0	209,0 429,0	241

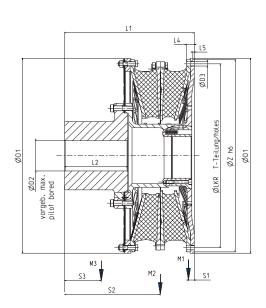
08 **RATO S+** A/M 2101-1

RATO S+ серия / Series 2200

G4J1, G5B1, G5G1 G4J2, G5B2, G5G2

Группа размеров						Раз	меры		Mo	мент инерц	ии		Macca		Расстояние до центра тяжести					
Dimension Group	Dimensions										Mass moment of inertia				Mass	Distance to center of gravity				
	T_{KN} ĸH∙м / kNm	D ₁	vergeb. Pilot bored	2 max.	D ₃	Z	L _{kr}	T	L ₁	L ₂	L ₄ ¹⁾	J ₁	J₂ Kr•м² / kgm²	J ₃	m ₁	т 2 кг/kg	m ₃	S ₁	S ₂ MM/mm	S ₃
G4J1 G4J2	180 -	1480	230	370	33,0	1460	1395	32	780,00 958,30	480,0	33,0	102,0	266,0 168,0	252,0	311,0	1491,0 510,0	1572,0	58,0	357,0 729,0	 368
G5B1 G5B2	230 - 290	1585	250	400	33,0	1565	1500	32	808,80 1013,00	500,0	32,0	133,0 132,0	343,0 225,0	344,0	371,0 370,0	1670,0 636,0	1784,0	61,0 60,0	401,0 769,0	414
G5G1 G5G2	. 290 - 360	1710	280	430	36,0	1685	1615	32	848,00 1063,40	520,0	35,0	195,0 190,0	461,0 333,0	499,0	455,0 457,0	2031,0	2182,0	67,0 65,0	381,0 804,0	434


A/M 2200-1 RATO S+ 09

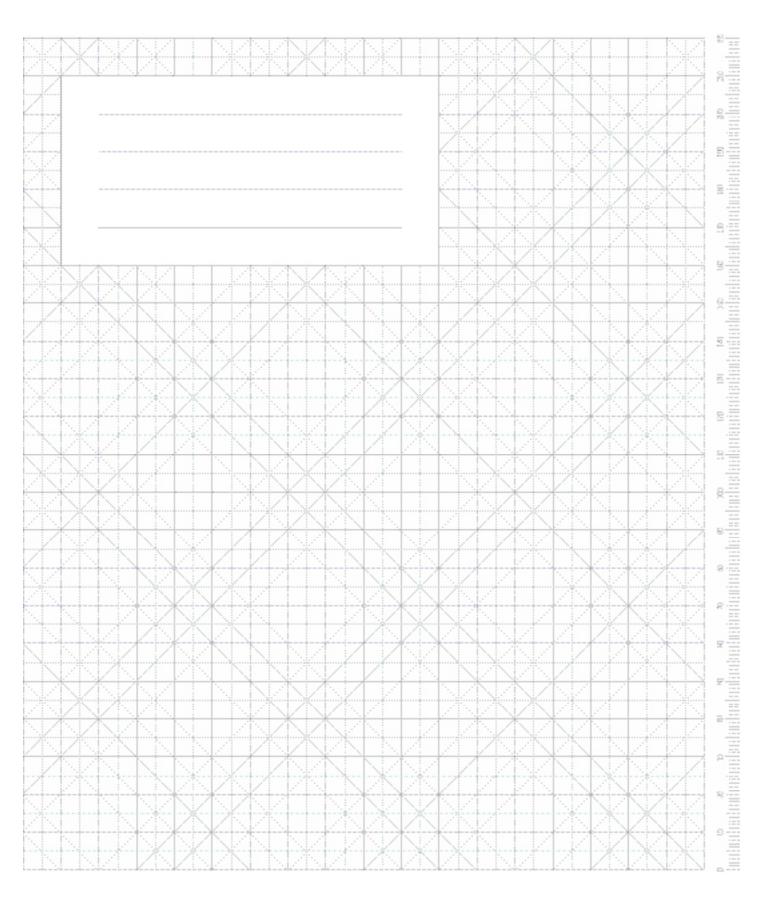

РАЗМЕРЫ/МОМЕНТЫ ИНЕРЦИИ/МАССЫ

DIMENSIONS/MASS-MOMENTS OF INERTIA/MASSES

RATO S+ серия / Series 2201

G4J1, G5B1, G5G1

G5B2,	


Группа размеров		Размеры													ции		Macca		Расстояние до центра тяжести		
Dimension Group	Dimensions N										Mass moment of inertia			Mass			Distance to center of gravity				
	Т_{КN} кН•м / kNm	D ₁	vergeb. Pilot bored	max.	D ₃	Z	L _{kr}	T	L ₁	L ₂	L ₄ ¹⁾	L _s	J ₁	J₂ кг•м² / kgm²	J₃	m ₁	т 2 кг/kg	m ₃	S ₁	S ₂ MM / mm	S ₃
G4J1 G4J2	180 - 225	1480	230	370	33,0	1460	1395	32	808,00 986,30	480,0	61,0	12,0	191,0	282,0 168,0	264,0	548,0	1744,0 510,0	1760,0	56,0	401,0 729,0	424,0
G5B1 G5B2	230 - 290	1585	250	400	33,0	1565	1500	32	839,00 1043,00	500,0	62,0	12,0	262,0	344,0 222,0	- 346,0	658,0	1984,0 598,0	2056,0	61,0	420,0 769,0	- 450,0
G5G1 G5G2	290 - 360	1710	280	430	36,0	1685	1615	32	880,00 1095,50	520,0	67,0	12,0	374,0	497,0 316.0	500,0	829,0	2453,0 744,0	2547,0	64,0	440,0 804,0	474,0

10 RATO S+ A/M 2201-1

ПРИМЕЧАНИЕ

NOTICE

www.vulkan.com

